Foundations in Python (P1)
Learn the fundamentals of Python, discover data management techniques, statistical packages, and explore regression analysis, building models, validation, and visualisations. £325 once-off fee: 3 months' access.
Welcome Screen
Welcome Letter
How to use the Actuartech platform
Software and package requirements
FREE PREVIEW0.1 - Objectives
FREE PREVIEW0.2 - Introducing Python
0.3 - How to get set up
0.4 - A User Guide for Jupyter Notebooks
0.5 - Other ways to code in Python
1.1 Module 1 Overview
1.2 Introduction to Python
1.3 Data Collection: Case Study A
1.4 Data Collection: Case Study B
Appendix 1A: Reading and Writing External Data Sets
Appendix 1B: Built-in Datasets
Appendix 1C: DataFrames - Introduction, subsetting and filtering
Appendix 1D: DataFrames - More subsetting and lookup functions
Appendix 1E: DataFrames - Missing (or NA) values
Appendix 1F: DataFrames - Adding or removing data
Appendix 1G: DataFrames - Categorical variables, summary and sorting
Appendix 1H: DataFrames - Pivot table and grouping
Appendix 1I: DataFrames - Time series
2.5 Optional Coding Challenge: Introduction to Python
2.6 Optional Coding Challenge: Data Collection
2.1 Module 2 Overview
2.2 Data Management: Case Study A
2.3 Data Management: Case Study B
Appendix 2A: Loops
Appendix 2B: Functions
2.4 Optional Coding Challenge: Data Management
3.1 Module 3 Overview
3.2 Model Building: Case Study A
3.3 Model Building: Case Study B
Appendix 3A: End-to-end Linear Regression Example
3.4 Optional Coding Challenge: Model Building
4.1 Module 4 Overview
4.2 Visualisations: Case Study A
4.3 Visualisations: Case Study B
Appendix 4A: Line Plots
Appendix 4B: Scatter Plots
Appendix 4C: Bar Charts
Appendix 4D: Histograms and Density plots
Appendix 4E: Box Plots
4.4 Optional Coding Challenge: Visualisations